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ABSTRACT

To reduce feature dimensions while obtaining robust classifi-
cation, in this paper, we propose quaternion sparse discrim-
inant analysis (QSDA) for color face recognition. QSDA
is formulated as a quaternion sparse regression-type model.
It employs the quaternion algebra to provide an elegant and
holistic way to represent color face images. The succeeding
operations are directly applied to two-dimensional quaternion
matrices, and hence QSDA is computationally efficient and
well preserves the spatial structure of color face images. Ben-
efited from sparsity constraints, QSDA is robust for classi-
fication. An alternating minimization algorithm is designed
to solve QSDA. Experimental results demonstrate the effec-
tiveness of QSDA for color face recognition, especially for
partially occluded color face images.

Index Terms— QSDA, feature extraction, color face
recognition, partial occlusion

1. INTRODUCTION

Linear discriminant analysis (LDA) is a supervised learning
method for data classification as well as feature dimensional-
ity reduction [1]. It can be used for face recognition. How-
ever, its performance is limited when applied to recognizing
color face images. Color information is an important cue for
face recognition [2, 3]. When dealing with color face images,
LDA either processes different color channels separately or
concatenates them into a larger matrix. This way, the cross-
channel correlation of color face images is ignored.

To preserve the correlation among different color chan-
nels of face images, quaternion discriminant analysis (QDA)
was proposed by extending LDA from real space to quater-
nion space. The quaternion algebra provides an elegant and
holistic way to represent color face images by encoding the
cross-channel correlation into quaternion numbers.

Nevertheless, QDA still suffers the following problem-
s: (1) QDA converts the input color face images into high-
dimensional (HD) quaternion vectors. It is computational-
ly expensive to calculate the between-class and within-class
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variance matrices in the HD space. Moreover, the vectoriza-
tion of color face images results in structural loss. (2) Real-
world face recognition may be affected by outliers, e.g., par-
tial occlusions. QDA is sensitive to outliers because it uses l2
norm as measurement [4, 5].

To address these problems, in this paper, we propose
quaternion sparse discriminant analysis (QSDA) for color
face recognition. The advantages of QSDA are:
1) Using quaternion representation, QSDA can well preserve

the cross-channel correlation of color face images;

2) QSDA directly copes with quaternion matrices rather than
transforming them into HD quaternion vectors. Hence it
can preserve the spatial structure of color face images and
avoid extensive computation;

3) Benefited from the sparsity constraints, QSDA is robust to
classify color face images with partial occlusions.

2. PRELIMINARIES

In this section, we review the quaternion algebra and quater-
nion discriminant analysis (QDA). The related notations are
listed in Table 1.

Table 1: Summary of Notations.

Notation Description

a, a, A scalars, vectors, and matrices in real
space (R) and complex space (C)

ȧ, ȧ, Ȧ scalars, vectors, and matrices in
quaternion space (H)

(·)T transpose
(̄·) conjugate
(·)∗ transpose conjugate
Tr(·) trace of matrix
Re(·) real part of variable

2.1. Quaternions

Quaternions are a four-dimensional vector space over the field
of real numbers [6]. A quaternion (q̇ ∈ H) has one real part
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and three imaginary parts, represented by

q̇ = q0 + q1i+ q2j + q3k,

where q0, q1, q2, q3 ∈ R and {1, i, j, k} are the bases of the
four dimensions whose product obey i2 = j2 = k2 = ijk =
−1. The conjugate and module of q̇ are defined as ¯̇q = q0 −
q1i− q2j − q3k and |q̇| =

√
q20 + q21 + q22 + q23 , respectively.

Multiplication is non-commutative for quaternions, i.e.,
ṗq̇ 6= q̇ṗ in general, making it complicated to process quater-
nions [7]. To provide an effective approach for quaternion
analysis, the complex adjoint form is adopted by transform-
ing quaternions into equivalent complex pairs [6]. This trans-
formation is given in Definition 1 and 2.

Definition 1. Let Q̇ = Q0 +Q1i+Q2j+Q3k ∈ Hm×n,
Q0,Q1,Q2,Q3 ∈ Rm×n. The Cayley-Dickson form [6] of
Q̇ is expressed by

Q̇ = Qa + Qbj,

where Qa = Q0 + Q1i, Qb = Q2 + Q3i, and Qa,Qb ∈
Cm×n.

Definition 2. Let Q̇ = Qa + Qbj, Q̇ ∈ Hm×n. The
complex adjoint form [6] of Q̇ is formulated as

χQ̇ =

[
Qa Qb

−Qb Qa

]
,

where χQ̇ ∈ C2m×2n. Q̇ and χQ̇ are isomorphic [6].
We also define the norms of quaternion vectors and matri-

ces to formulate our objective function in quaternion space.
Definition 3. Let q̇ = (q̇s) ∈ Hm, where s = 1, ...,m is

a position indicator. The l1 norm of q̇ is defined as ‖q̇‖1 =
m∑
s=1
|q̇s|; let Q̇ = (q̇s,t) ∈ Hm×n, where s = 1, ...,m and

t = 1, ..., n are the position indicators. The F norm of Q̇ is

defined as ‖Q̇‖F =

√
m∑
s=1

n∑
t=1
|q̇s,t|2 =

√
Tr(Q̇∗Q̇).

Properties. Let Ṗ, Q̇ ∈ Hm×m. A list of facts follows
[6]:

1. (ṖQ̇)∗ = Q̇∗Ṗ∗

2. (χQ̇)∗ = χQ̇∗

3. χ(Ṗ+Q̇) = χṖ + χQ̇

4. χṖQ̇ = χṖχQ̇

5. 2‖Q̇‖2F = 2Tr(Q̇∗Q̇) = ‖χQ̇‖2F = Tr(χQ̇∗χQ̇)

2.2. Quaternion Discriminant Analysis (QDA)

QDA seeks a set of quaternion projection bases, such that af-
ter projecting onto these bases, the distances of the projected
samples from the same class are as close as possible, while
the distances of the projected samples from different classes

are as far as possible. QDA is effective in classifying color
face images [8].

Let ẋij represent the jth quaternion sample from the ith
class. Each sample is a one-dimensional quaternion vector by
concatenating the rows (or columns) of quaternion image ma-
trix. The mean quaternion sample of the ith class is denoted
by ¯̇xi = 1

hi

∑hi

j=1 ẋij , where hi is the number of samples in
the ith class. The mean quaternion sample of all input sam-
ples is represented by ¯̇x = 1

c

∑c
i=1

¯̇xi, where c is the total
number of classes.

Then we construct Ṡb =
∑c
i=1 hi(

¯̇xi − ¯̇x)(¯̇xi − ¯̇x)∗

and Ṡw =
∑c
i=1

∑hi

j=1(ẋij − ¯̇xi)(ẋij − ¯̇xi)∗ to represent
the between-class variance and within-class variance of input
samples, respectively. Let the columns of V̇ = [v̇1, ..., v̇k] be
the quaternion projection bases of QDA. QDA seeks optimal
bases that maximizing V̇∗ṠbV̇ while minimizing V̇∗ṠwV̇.
Thus, the objective of QDA is formulated as

max
V̇

(V̇∗ṠbV̇−µV̇∗ṠwV̇) = max
V̇
{V̇∗(Ṡb−µṠw)V̇}. (1)

The solution of Eq. (1) equals to the leading eigenvectors
of Ṡb − µṠw, where µ is a parameter to control the relative
importance of V̇∗ṠbV̇ and V̇∗ṠwV̇.

Note that, in real space, LDA is optimized by maximizing
VT SbV
VT SwV

. Calculating the derivation of VT SbV
VT SwV

and setting it
to zero, the solution of LDA reduces to the leading eigenvec-
tors of (Sw)−1Sb [1]. However, the quaternion derivation is
complicated [9] and the solution of LDA cannot be directly
extended to the solution of QDA by maximizing V̇∗ṠbV̇

V̇∗ṠwV̇
. In-

stead, QDA optimizes Eq. (1), which is an approximation of
maximizing V̇∗ṠbV̇

V̇∗ṠwV̇
and facilitates the subsequent optimiza-

tion by avoiding quaternion division.

3. QUATERNION SPARSE DISCRIMINANT
ANALYSIS

In this section, we introduce our novel quaternion sparse
regression-type model for quaternion sparse discriminan-
t analysis (QSDA) and design an alternating minimization al-
gorithm to solve it.

3.1. Quaternion Sparse Discriminant Analysis (QSDA)

Motivated by the sparse regression-type models in [10, 11],
this section proposes a quaternion sparse regression-type
model for QSDA. To protect the spatial structure of samples
and to reduce the computational cost, QSDA operates directly
on quaternion matrices.

Suppose there are quaternion samples from c classes and
the ith class has hi samples. Let Ẋi

j ∈ Hm×n be the jth

quaternion sample from the ith class, ¯̇Xi = 1
hi

∑hi

j=1 Ẋi
j and

¯̇X = 1
c

∑c
i=1

¯̇Xi represent the mean quaternion sample of the



ith class and the mean quaternion sample of all input quater-
nion samples, respectively. Then, the between-class scatter
and within-class scatter are defined as Ṡb =

∑c
i=1 hi(

¯̇Xi −
¯̇X)( ¯̇Xi− ¯̇X)∗ and Ṡw =

∑c
i=1

∑hi

j=1(Ẋi
j−

¯̇Xi)(Ẋi
j−

¯̇Xi)∗,
respectively.

QSDA achieves its quaternion sparse bases, denoted
by V̇s = [v̇s1, ..., v̇sk], as follows. Let the quaternion
eigen-decomposition of Ṡb − µṠw be ṘΣṘ∗ and Ω̇ =
Ṙ
√
| Σ |Ṙ∗. Find optimal Ȧ = [ȧ1, ..., ȧk] ∈ Hm×k and

Ḃ = [ḃ1, ..., ḃk] ∈ Hm×k that, for any λ2 ≥ 0 and λ1,j ≥ 0,
j = 1, ..., k, satisfy:

min
Ȧ,Ḃ

(‖Ṙ−∗Ω̇− ȦḂ∗Ω̇‖2F +λ2‖ṘḂ‖2F +
k∑
j=1

λ1,j‖ḃj‖1)

subject to Ȧ∗Ȧ = Ik, (2)

Then, v̇sj =
ḃj

‖ḃj‖2
, j = 1, ..., k.

Eq. (2) gives the criterion of QSDA. The sparsity of the
jth projection bases v̇sj is controlled by the corresponding l1
norm penalty (λ1,j‖ḃj‖1).

3.2. Solution of QSDA

Due to the non-commutativity of quaternion multiplication,
solving Eq. (2) directly in quaternion space is difficult. We
adopt the complex form of Eq. (2) to obtain its equivalent
complex solution and convert this solution back to the quater-
nion space.

The quternion F -norm terms in Eq. (2) can be trans-
formed into complex space using the F norms of their com-
plex adjoint forms as follows. (Property 5. in Section 2.1.)

2(‖Ṙ−∗Ω̇− ȦḂ∗Ω̇‖2F + λ2‖ṘḂ‖2F ) (3)

= ‖χṘ−∗χΩ̇ − χȦχḂ∗χΩ̇‖
2
F + λ2‖χṘχḂ‖

2
F .

Let
γ = χṘ, α = χȦ, β = χḂ, φ = χΩ̇.

Eq. (3) can be rewritten as

‖γ−∗φ− αβ∗φ‖2F + λ2‖β‖2F (4)

=Tr[φ∗(γ−∗ − αβ∗)∗(γ−∗− αβ∗)φ] + λ2Tr(β
∗γ∗γβ)

=Tr[(γ−1 − βα∗)(γ−∗− αβ∗)(φφ∗)] + λ2Tr(β
∗γ∗γβ).

Setting ϕ = φφ∗, Eq. (4) can be further reduced to

Tr(γ−∗ϕγ−1)−Tr(α∗γ−∗ϕβ)+Tr[β∗(ϕ+λ2γ
∗γ)β]. (5)

We then define the complex form of quaternion l1 norm.
Definition 4. Let q̇ = qa + qbj ∈ Hm and q be the first

column of of χq̇, i.e., q = χq̇(:, 1) = [qa;−qb] ∈ C2m. We
define ξ(q) = [qTa ; qTb ], where ξ(q) ∈ C2×m. The l1 norm
of q̇ can be represented by

‖q̇‖1 = ‖ξ(q)‖2,1,

where ‖M‖2,1 denotes the l2,1 norm of M ∈ Cn×m, and it is

defined as ‖M‖2,1 =
m∑
j=1

‖M(:, j)‖2.

According to the construction of the complex adjoint form
(Definition 2), to recover a matrix in complex adjoint form,
we only need to calculate the first half columns and then infer
the other half columns from the previous ones.

Finally, Eq. (2) can be rewritten into a complex form as

min
α,β
{Tr(γ−∗ϕγ−1)− 2Tr(α∗γ−∗ϕβ)+ (6)

Tr[β∗(ϕ+ λ2γ
∗γ)β] + 2

k∑
j=1

λ1,j‖ξ(βj)‖2,1}

= min
α,β
{
k∑
j=1

[β∗j (ϕ+λ2γ
∗γ)βj−2Re(α∗jγ

−∗ϕβj)+λ1,j‖ξ(βj)‖2,1]}

subject to α∗α = I2k.

We develop an alternating minimization algorithm to
solve Eq.(6).

1. Fixing α, find optimal β. Eq.(6) can be solved by
optimizing

min
βj

[β∗j (ϕ+λ2γ
∗γ)βj−2Re(α∗jγ

−∗ϕβj)+λ1,j‖ξ(βj)‖2,1]. (7)

for j = 1, ..., k.
Due to the l2,1-norm-based regularization (group lasso

problem), Eq. (7) has no closed-form solution. We thus devise
an algorithm to solve it under the framework of the complex
ADMM algorithm [12].

Assume Z = ξ(βj) and vec(Z) be the vectorization of Z.
The augmented Lagrangian function of Eq. (7) is written as

L(βj ,Z,y)=β∗j (ϕ+λ2γ
∗γ)βj−2Re(α∗jγ

−∗ϕβj)+λ1,j‖Z‖2,1

+ y∗[βj − vec(Z)] +
ρ

2
[βj − vec(Z)]22, (8)

where y is the Lagrangian multiplier and ρ > 0 is the penal-
ty parameter. To solve L(βj ,Z,y), we iteratively optimize
βj ,Z,y one by one. Particularly, given the result of the τ th
iteration, the (τ + 1)th iteration to optimize L(βj ,Z,y) is
expressed by:

• Update βτ+1
j by minimizing L w.r.t βj . Setting the

derivation of L w.r.t βj to zero, we obtain

βτ+1
j =[ϕ+(λ2+ρτγ∗γ)]−1[ϕγ−1αj+ρ

τvec(Zτ )−yτ ]. (9)
• Update Zτ+1 by minimizing L w.r.t Z. The optimiza-

tion of L equals to

min
Z
{ρ

τ

2
‖βτ+1

j − vec(Z)‖22

+ y∗[βτ+1
j − vec(Z)]+λ1,j‖Z‖2,1} (10)

=min
Z
{‖vec(Z)− (βτ+1

j +
yτ

ρτ
)‖22+

λ1,j
ρτ
‖Z‖2,1}

=min
Z
{‖Z−vec−1(βτ+1

j +
yτ

ρτ
)‖2F +

λ1,j
ρτ
‖Z‖2,1},



where vec−1(·) is the inverse of vec(·). Eq. (10) can be
solved using Lemma 1, which is derived according to
the optimization of the group lasso problem in [13, 12].

Lemma 1. If a problem considering Z ∈ C is to find

min
Z
{‖Z−R‖2F + σ‖Z‖2,1}.

The optimal Z is obtained at

Ẑ(:, i) =

{
‖R(:,i)‖2−σ
‖R(:,i)‖2 R(:, i), ‖R(:, i)‖2 > σ

0, otherwise.
• Update yτ+1 by

yτ+1 = yτ + ρ[βτ+1
j − vec(Zτ+1)]. (11)

We obtain the optimal βj (the solution of Eq. (7)) when
the above algorithm converges, and then we can also obtain
the optimal βj+k from βj . Finally, β is optimized after Eq. (7)
is solved for k = 1, ..., k.

2. Fixing β, find optimal α. Given β, the minimization
of Eq. (6) is equivalent to find

max
α

Re[Tr(α∗γ−∗ϕβ)]. (12)

where α can be solved using Lemma 2 by setting η = γ−∗ϕβ.
Lemma 2. Let α, η ∈ Cm×k, and the rank of η is k

(k < m). Consider the optimization

max
α

Re[Tr(α∗η)] (13)

subject to α∗α = Ik.

Suppose the SVD of η is η = UηΣηV
∗
η , then α̂ = UηV

∗
η . The

proof of Lemma 2 is in [14] (Theorem 4).
The solution of Eq. (6) is achieved when the alternating

minimization algorithm converges. Afterwards, we transfer
this complex-valued solution into the quaternion-valued solu-
tion using the operator in Definition 5 [15].

Definition 5. Let c = [c1, ..., cn, cm+1, ..., c2m]T , c ∈
C2m. Define an operator γ(·) as

γ(c) = [c1, c2, ..., cn]T + [cm+1, cm+2, ..., c2m]T j,

where γ(c) ∈ Hm is in the Cayley-Dickson form.
Then, the solution of Eq. (2), V̇s = [v̇s1, ..., v̇sk], can be

recovered from the optimal columns of β as v̇sj = γ(
βj

‖βj‖2 ),
j = 1, ..., k. Finally, the detail procedures of QSDA are sum-
marized in Algorithm 1.

4. COLOR FACE RECOGNITION

We test the effectiveness of QSDA using three challenging
color face databases, namely, AR database [16], Bosphorus
database [16], and EURECOM Kinect database [17]. These
three databases are composed of non-occluded and partial-
ly occluded color face images. All images are cropped and
resized to 32*32. Examples of the cropped face images are
given in Fig. 1.

Algorithm 1: QSDA
Input : Training set {Ẋi

j}, sparsity constraints, and stopping
criterion.

Output: Optimal sparse bases [v̇s1, ..., v̇sk].
1 Calculate Ṡb and Ṡw . Derive Ṙ and Ω̇ from Ṡb and Ṡw .
2 Rewrite QSDA to its complex form (Eq.(6)). Given γ, ϕ, find the

optimal α, β.
3 Initialize α such that α∗α = I2k .
4 repeat
5 (1) Fixing α, find optimal β.
6 for each βj , j = 1, ..., k, do
7 Find optimal βj under the framework of the complex

ADMM algorithm.
8 end
9 for each βj+k , j = 1, ..., k, do

10 Infer optimal βj+k from βj .
11 end
12 (2) Fixing β, find optimal α. Let γ−∗ϕβ = UDV ∗, update α

using α̂ = UV ∗.
13 until β converges;
14 for j = 1, ..., k, do
15 Recover v̇sj from βj using v̇sj = γ(

βj
‖βj‖2

), where γ(·) is an
operator in Definition 5.

16 end
17 Output [v̇s1, ..., v̇sk].

Fig. 1: Color face images of one person from (a) AR database;
(b) Bosphorus database; (c) EURECOM Kinect database.

4.1. Recognition accuracy and robustness

The proposed QSDA is compared with ten state-of-the-art al-
gorithms, namely, four PCA-based algorithms (PCA, QPCA,
MPCA, and MSPCA), four discriminant analysis algorithms
(LDA, QDA, TDA, and STDA), and two kernel discriminant
analysis algorithms (KFDA and IKFDA).

For the parameters of QSDA, µ is selected from
10−4, 10−3, ..., 104; λ2 = 0.001; λ1,j j = 1, ..., k are adap-
tively tuned so that the number of nonzero elements in each
sparse bases are kept as 2, 4, ..., 32. For the parameters of the
competing algorithms, we test all recommended values and
record their best results. To provide a fair comparison, (1) the
recognition accuracies of all algorithms are tested with vary-
ing feature dimensions, and we select their best performance;
(2) all experiments use the nearest neighbor classifier with l1
norm distance.

In the first three experiments, we compare the recogni-
tion accuracies of different algorithms on the non-occluded
color face images. For AR and EURECOM, we use the non-



Table 2: Recognition rates on non-occluded color face images.

Database
Train/Test

/Person

PCA

[18]

QPCA

[19]

MPCA

[20]

MSPCA

[21]

LDA

[1]

QDA

[8]

TDA

[22]

STDA

[11]

KFDA

[23]

IKFDA

[24]
QSDA

AR 7/7/100 0.7486 0.8142 0.7614 0.8357 0.3857 0.4571 0.8271 0.8443 0.7971 0.8642 0.8971

Bosphorus N/E/105 0.6711 0.8543 0.8631 0.8874 0.5188 0.7351 0.908 0.9367 0.8083 0.8145 0.8830

EURECOM 4/4/52 0.7212 0.75 0.7548 0.7933 0.4904 0.5144 0.7837 0.8029 0.8413 0.8701 0.8462

1. N: neural color face images; E: color face images with expression variants.
2. Bold type indicates the best performance; italic bold type number represents the second best performance.

Table 3: Recognition rates on partially occluded color face images.

Database
Train/Test

/Person

PCA

[18]

QPCA

[19]

MPCA

[20]

MSPCA

[21]

LDA

[1]

QDA

[8]

TDA

[22]

STDA

[11]

KFDA

[23]

IKFDA

[24]
QSDA

AR 14/12/100 0.275 0.4575 0.5283 0.6667 0.2417 0.4250 0.68 0.7275 0.5291 0.5342 0.8208∗

Bosphorus N/O/105 0.6326 0.7218 0.7375 0.7927 0.4514 0.6614 0.7428 0.8058 0.7321 0.7304 0.8242

EURECOM 8/6/52 0.3782 0.432 0.4281 0.5289 0.205 0.2243 0.5160 0.5801 0.4551 0.4711 0.6987∗

1. N: neural color face images; O: partially occluded color face images.
2. Bold type indicates the best performance; italic bold type number represents the second best performance; double asterisks (∗) designates more than 10% improvement

between the algorithm with the best recognition rate and the algorithm with the second best algorithm.

occluded color face images in session one to train the projec-
tion bases, and project the corresponding non-occluded color
face images in session two onto those bases for testing. For
Bosphorus, the neural color face images are used for training
while the face images with different expressions are adopted
for testing. The performance of all competing algorithms is
reported in Table 2. QSDA obtains the best or comparable
performance among the peer algorithms.

To evaluate the robustness of different algorithms against
partial occlusions, in the following three experiments, we
train the projection bases of different algorithms using non-
occluded color face images and test their performance by rec-
ognizing partially occluded color face images. The results
are given in Table 3. QSDA has the best recognition accu-
racies on all databases and shows superiority over the peer
algorithms.

4.2. Interpretation of the sparse projection bases

To analyze the semantic interpretation of the sparse projection
bases of QSDA, Fig. 2 visualizes the nonzero elements, rep-
resented by the non-black lines, in the first five bases. In this
example, we set µ = 10−3 and λ2 = 0.001. λ1,j , j = 1, ..., k
are adjusted so that each sparse projection base has exactly
four nonzero elements. When projecting color face images
onto these sparse bases, only non-black regions are main-
tained. These non-black regions emphasize the chin, fore-
head, eyes, mouth, and cheek, individually, which coincide
the discriminative regions reported in [25, 26].

5. CONCLUSION

In this paper, we developed QSDA to extract features and ro-
bustly classify patterns on color face images. A quaternion

Fig. 2: Visualization of nonzero elements in the first five s-
parse projection bases of QSDA.

sparse regression-type model was proposed for QSDA. We
designed an alternating minimization algorithm to solve QS-
DA in the complex space. Experimental results demonstrated
that QSDA outperforms its competitors when applied to color
face recognition, especially on partially occluded color face
images.
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